f(x)=[x-(2-3i)][x-(2+3i)](x-3)

Simple and best practice solution for f(x)=[x-(2-3i)][x-(2+3i)](x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(x)=[x-(2-3i)][x-(2+3i)](x-3) equation:


Simplifying
f(x) = [x + -1(2 + -3i)][x + -1(2 + 3i)](x + -3)

Multiply f * x
fx = [x + -1(2 + -3i)][x + -1(2 + 3i)](x + -3)
fx = [x + (2 * -1 + -3i * -1)][x + -1(2 + 3i)](x + -3)
fx = [x + (-2 + 3i)][x + -1(2 + 3i)](x + -3)

Reorder the terms:
fx = [-2 + 3i + x][x + -1(2 + 3i)](x + -3)
fx = [-2 + 3i + x][x + (2 * -1 + 3i * -1)](x + -3)
fx = [-2 + 3i + x][x + (-2 + -3i)](x + -3)

Reorder the terms:
fx = [-2 + 3i + x][-2 + -3i + x](x + -3)

Reorder the terms:
fx = [-2 + 3i + x][-2 + -3i + x](-3 + x)

Multiply [-2 + 3i + x] * [-2 + -3i + x]
fx = [-2[-2 + -3i + x] + 3i * [-2 + -3i + x] + x[-2 + -3i + x]](-3 + x)
fx = [[-2 * -2 + -3i * -2 + x * -2] + 3i * [-2 + -3i + x] + x[-2 + -3i + x]](-3 + x)
fx = [[4 + 6i + -2x] + 3i * [-2 + -3i + x] + x[-2 + -3i + x]](-3 + x)
fx = [4 + 6i + -2x + [-2 * 3i + -3i * 3i + x * 3i] + x[-2 + -3i + x]](-3 + x)

Reorder the terms:
fx = [4 + 6i + -2x + [-6i + 3ix + -9i2] + x[-2 + -3i + x]](-3 + x)
fx = [4 + 6i + -2x + [-6i + 3ix + -9i2] + x[-2 + -3i + x]](-3 + x)
fx = [4 + 6i + -2x + -6i + 3ix + -9i2 + [-2 * x + -3i * x + x * x]](-3 + x)

Reorder the terms:
fx = [4 + 6i + -2x + -6i + 3ix + -9i2 + [-3ix + -2x + x2]](-3 + x)
fx = [4 + 6i + -2x + -6i + 3ix + -9i2 + [-3ix + -2x + x2]](-3 + x)

Reorder the terms:
fx = [4 + 6i + -6i + 3ix + -3ix + -9i2 + -2x + -2x + x2](-3 + x)

Combine like terms: 6i + -6i = 0
fx = [4 + 0 + 3ix + -3ix + -9i2 + -2x + -2x + x2](-3 + x)
fx = [4 + 3ix + -3ix + -9i2 + -2x + -2x + x2](-3 + x)

Combine like terms: 3ix + -3ix = 0
fx = [4 + 0 + -9i2 + -2x + -2x + x2](-3 + x)
fx = [4 + -9i2 + -2x + -2x + x2](-3 + x)

Combine like terms: -2x + -2x = -4x
fx = [4 + -9i2 + -4x + x2](-3 + x)

Multiply [4 + -9i2 + -4x + x2] * (-3 + x)
fx = [4(-3 + x) + -9i2 * (-3 + x) + -4x * (-3 + x) + x2(-3 + x)]
fx = [(-3 * 4 + x * 4) + -9i2 * (-3 + x) + -4x * (-3 + x) + x2(-3 + x)]
fx = [(-12 + 4x) + -9i2 * (-3 + x) + -4x * (-3 + x) + x2(-3 + x)]
fx = [-12 + 4x + (-3 * -9i2 + x * -9i2) + -4x * (-3 + x) + x2(-3 + x)]
fx = [-12 + 4x + (27i2 + -9i2x) + -4x * (-3 + x) + x2(-3 + x)]
fx = [-12 + 4x + 27i2 + -9i2x + (-3 * -4x + x * -4x) + x2(-3 + x)]
fx = [-12 + 4x + 27i2 + -9i2x + (12x + -4x2) + x2(-3 + x)]
fx = [-12 + 4x + 27i2 + -9i2x + 12x + -4x2 + (-3 * x2 + x * x2)]
fx = [-12 + 4x + 27i2 + -9i2x + 12x + -4x2 + (-3x2 + x3)]

Reorder the terms:
fx = [-12 + 27i2 + -9i2x + 4x + 12x + -4x2 + -3x2 + x3]

Combine like terms: 4x + 12x = 16x
fx = [-12 + 27i2 + -9i2x + 16x + -4x2 + -3x2 + x3]

Combine like terms: -4x2 + -3x2 = -7x2
fx = [-12 + 27i2 + -9i2x + 16x + -7x2 + x3]

Solving
fx = -12 + 27i2 + -9i2x + 16x + -7x2 + x3

Solving for variable 'f'.

Move all terms containing f to the left, all other terms to the right.

Divide each side by 'x'.
f = -12x-1 + 27i2x-1 + -9i2 + 16 + -7x + x2

Simplifying
f = -12x-1 + 27i2x-1 + -9i2 + 16 + -7x + x2

Reorder the terms:
f = 16 + -9i2 + 27i2x-1 + -12x-1 + -7x + x2

See similar equations:

| (3x^1/2)-(16x^1/4)-12=0 | | 3x^1/2-15x^1/4-12=0 | | 4x-12-2x-21=-6 | | 7x+2(x+1)=34 | | f(-pi/4)=cos2x | | 16d+23=14(d-2) | | 12(x+1)=4(2x+5) | | -17(6x-19)=4x+53 | | 16=x-12 | | 2(x)=5x+2 | | =7a*a+2 | | 2x-1=3(-4x) | | =7a*a | | 2(2x+2)=3x+4+x | | 3x-2=199 | | 2(x+1)=6(5)-3(x+2) | | 6x-23=4x-3 | | z/35=4/5 | | =2f(g+h) | | -9-2(-7x+7)=4 | | 103b=n-60 | | 2x+1=30-3x+2 | | =a(x+y) | | 6=3.5x | | 15b^2-22b-5=0 | | -2x+12=-50 | | 10x/25=10 | | 100=3x+0.5x | | x^2-10x-180=0 | | =2a(4+3a) | | 9f=56 | | 6t^2-18t+30=0 |

Equations solver categories